Dppm-substituted ruthenium clusters with capping sulfido and selenido ligands derived from thiourea, tetramethylthiourea and elemental selenium

Syed J. Ahmed ${ }^{\text {a }}$, Md. Iqbal Hyder ${ }^{\text {a }}$, Shariff E. Kabir ${ }^{*, a}$, Md. Arzu Miah ${ }^{\text {a }}$, Antony J. Deeming ${ }^{\text {b,* }}$, Ebbe Nordlander ${ }^{*, c}$
${ }^{\text {a }}$ Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
${ }^{\mathrm{b}}$ Department of Chemistry, University College London, 20 Gordon Street, London WC 1H OAJ, UK
${ }^{c}$ Inorganic Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-22100 Lund, Sweden

Received 9 August 2005; accepted 12 August 2005
Available online 20 October 2005

Abstract

Treatment of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mu\right.$ - dppm$\left.)\right](4)\left[\mathrm{dppm}=\operatorname{bis}\left(\right.\right.$ diphenylphosphido)methane] with tetramethylthiourea at $66^{\circ} \mathrm{C}$ gave the previously reported dihydrido triruthenium cluster $\left[\mathrm{Ru} u_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right](5)$ and the new compounds $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right]$ (6), $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right](7)$ and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right](\mathbf{8})$ in $6 \%, 10 \%, 32 \%$ and 9% yields, respectively. Treatment of $\mathbf{4}$ with thiourea at the same temperature gave 5 and 7 in 30% and 10% yields, respectively. Compound 7 reacts further with tetramethylthiourea at $66^{\circ} \mathrm{C}$ to yield $6(30 \%)$ and a new compound $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}(\mu-\mathrm{dppm})\right](9)(8 \%)$. Thermolysis of $\mathbf{8}$ in refluxing THF yields 7 in 55% yield. The reaction of $\mathbf{4}$ with selenium at $66^{\circ} \mathrm{C}$ yields the new compounds $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right](\mathbf{1 0})$ and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)\left(\mu_{3}-\eta^{3}-\mathrm{PhPCH}_{2} \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}(\mathrm{CO})_{6}(\mu-\mathrm{CO})\right](\mathbf{1 1})$ and the known compounds $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right](12)$ and $\left[\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{Se}\right)_{4}(\mathrm{CO})_{10}(\mu-\mathrm{dppm})\right](\mathbf{1 3})$ in $29 \%, 5 \%, 2 \%$ and 5% yields, respectively. Treatment of 10 with tetramethylthiourea at $66^{\circ} \mathrm{C}$ gives the mixed sulfur-selenium compounds $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}(\mu\right.$-dppm $\left.)\right]$ (14) and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}(\mu-\mathrm{dppm})\right](\mathbf{1 5})$ in 38% and 10% yields, respectively. The single-crystal XRD structures of $\mathbf{6}, 7$,

 $8,10,14$ and 15 are reported.© 2005 Elsevier B.V. All rights reserved.
Keywords: Triruthenium clusters; Tetramethylthiourea; Sulfur; Selenium; Carbene; Alkylidene; X-ray structures

1. Introduction

Reactions between thioureas and transition metal carbonyl clusters of ruthenium [1-9] and osmium [10-12] have been extensively studied, initially by the Süss-Fink group [1-9]. These reactions are generally accompanied by cleavage of $\mathrm{N}-\mathrm{H}, \mathrm{C}-\mathrm{N}, \mathrm{C}=\mathrm{S}$ and $\mathrm{C}-\mathrm{H}$ bonds depending upon the substituted thiourea and reaction conditions. For example, thiourea, dimethylthiourea and diphenylthiourea with $\left[R u_{3}(C O)_{12}\right]$ lead to $\left[R u_{3}(\mu-H)\left(\mu_{3}-\eta^{2}-\mathrm{RNCSNRH}\right)\right.$ -

[^0]$\left.(\mathrm{CO})_{9}\right]$ (Scheme 1), containing triply-bridging thioureato ligands by $\mathrm{N}-\mathrm{H}$ bond cleavage [1].

In contrast, diisopropylthiourea and diethylthiourea react with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ under more forcing conditions to give tetraruthenium clusters, containing sulfido and diaminocarbene ligands (Scheme 2) by cleavage of the $\mathrm{C}=\mathrm{S}$ bond [3].

Further variations are found in the treatment of di-tertbutylthiourea with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ at room temperature to give $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{S}\right)\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NHCNHBu}^{t}\right)(\mathrm{CO})_{8}\right]$ and $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left\{\mu_{3}-\mathrm{SRu}(\mathrm{CO})_{3}\right\}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NHCNHBu}^{t}\right)(\mathrm{CO})_{9}\right]$ in which both $\mathrm{C}=\mathrm{S}$ and $\mathrm{C}-\mathrm{H}$ bonds are cleaved, leaving coordinated S and carbene ligands [6]. On the other hand,

($\mathrm{R}=\mathrm{H}, \mathrm{Me}$ or Ph)
Scheme 1.
tetramethylthiourea reacts with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ at $66^{\circ} \mathrm{C}$ to give two isomers of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{S}\right)\left(\mathrm{CH}_{2} \mathrm{NMeCNMe}_{2}\right)\right.$ $\left.(\mathrm{CO})_{8}\right]$ with the organic group either bridging or chelating, as well as corresponding tetranuclear clusters [3].

Lewis et al. [10] and we [11,12] have investigated reactions of the reactive triosmium cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mathrm{MeCN})_{2}\right]$ with thiourea, phenylthiourea and diphenylthiourea and obtained triosmium clusters of the type $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu-\eta^{2}-\mathrm{RNCSNHR}\right)(\mathrm{CO})_{10}\right]$ and $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\right.\right.$ RNCSNHR $)(\mathrm{CO})_{9}$] containing edge- and triply-bridging thioureato ligands, respectively. In contrast, tetramethylthiourea reacts with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ in the presence of $\mathrm{Me}_{3} \mathrm{NO} \cdot$ $2 \mathrm{H}_{2} \mathrm{O}$ giving $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}\left\{\eta^{1}-\mathrm{SC}\left(\mathrm{NMe}_{2}\right)_{2}\right\}\right],\left[\mathrm{Os}_{3}(\mu-\mathrm{OH})(\mu-\right.$ $\left.\mathrm{MeOCO})\left\{\eta^{1}-\mathrm{SC}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{9}\right]$ and $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{S}\right)(\mu-\right.$ $\left.\mathrm{MeOCO})\left\{\eta^{1}-\mathrm{SC}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{8}\right]$ containing S-coordinated tetramethylthiourea ligands [12]. We recently began systematic investigations of tetramethylthiourea reactivity with unsaturated triosmium clusters for which a variety of ligand coordination modes and transformations have been demonstrated including η^{1}-S-coordination, the latter being useful for further transformation [13]. Most recently we have investigated the reaction of tetramethylthiourea with the dppm-bridging triosmium cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$
$(\mu$-dppm $)]$ (1) and obtained only $\left[\mathrm{Os}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}(\mu-\right.$ dppm)] as two separable isomers [14] (Scheme 3).

These compounds are potential building blocks for higher nuclearity clusters [15]. Naturally, we wished to compare such reactivity patterns for osmium with that of the ruthenium analogue 4, which has also attracted attention for its reactivity with various small organics and for the role of dppm in stabilizing the cluster [16-27]. In this context, we describe in this paper the reactions of 4 with tetramethylthiourea, thiourea and elemental selenium.

2. Results and discussion

2.1. Synthesis

Cluster 4 reacts with tetramethylthiourea in refluxing THF to give, after chromatography, four triruthenium clusters: the known compound $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7^{-}}\right.$ (μ-dppm)] (5) (6\%), and the new compounds $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{S}_{2}(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right](6),\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right]$ (7) and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{CO}\right)(\mu\right.$-dppm)$]$ (8) in $10 \%, 32 \%$ and 9% yields, respectively (see Scheme 4). We recently reported $\mathbf{5}$ from the treatment of $\mathbf{4}$ with $\mathrm{H}_{2} \mathrm{~S}$ and it was characterized by single-crystal XRD [28].

Treatment of $\mathbf{4}$ with thiourea in refluxing THF gives 5 and 7 in 30% and 10% yields, respectively. This observation is similar to that reported for the corresponding osmium analogue $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu\right.$-dppm $\left.)\right]$ which afforded $\left[\mathrm{Os}_{3}(\mu-\right.$ $\left.\mathrm{H})_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right]$ and $\left[\mathrm{Os}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CO}\right)(\mathrm{CO})_{7}(\mu-\right.$ dppm)] when treated with thiourea at $110^{\circ} \mathrm{C}$ [14].

Treatment of 7 with tetramethylthiourea in refluxing THF gives the new cluster $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}\right.$ -$\left.(\mathrm{CO})_{6}(\mu-\mathrm{dppm})\right](9)$ together with compound 6 (Scheme 5) in 8% and 30% yields, respectively.

($\mathrm{R}=\mathrm{Et}$ or ${ }^{\mathrm{i}} \mathrm{Pr}$)
Scheme 2.

Scheme 3.

5

Scheme 4.

Scheme 5.

Treatment of $\mathbf{4}$ with elemental Se in refluxing THF at $66^{\circ} \mathrm{C}$ produces two new clusters: $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7^{-}}\right.$ $\left.\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right](\mathbf{1 0})$ and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{6}(\mu-\mathrm{CO})\left\{\mu_{3}-\right.\right.$ $\left.\left.\eta^{3}-\mathrm{PPhCH} 2 \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\right]$ (11) in 29% and 5% yields, respectively and two known compounds $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\right.\right.$ $\mathrm{Se})(\mathrm{CO})_{7}(\mu$-dppm $\left.)\right]$ (12) and $\left[\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{10}(\mu\right.$-dppm $\left.)\right]$ (13) in 2% and 5% yields, respectively (see Scheme 6). We [38] have recently reported $\mathbf{1 2}$ from hydrogenation of $\mathbf{1 0}$ while Predieri et al. [32] reported $\mathbf{1 3}$ from the reaction of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ with $\mathrm{dppmSe} \mathrm{S}_{2}$.

The reaction of $\mathbf{1 0}$ with tetramethylthiourea at $66^{\circ} \mathrm{C}$ yields two triruthenium mixed sulfur-selenium compounds $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right]$ (14) and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\right.\right.$ $\left.\mathrm{Se})\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}(\mu-\mathrm{dppm})\right]$ (15) in 38% and 10% yields, respectively (see Scheme 7). The new compounds were characterized by elemental analysis, infrared, ${ }^{1} \mathrm{H}$ NMR, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy and MS data together with single-crystal XRD studies for $\mathbf{6 - 8}, \mathbf{1 0}, \mathbf{1 4}$, and $\mathbf{1 5}$.

2.2. XRD and spectroscopic studies

The structures of 6 (Fig. 1 and Table 1) and $\mathbf{1 4}$ (Fig. 2 and Table 2) consist of an 'open' trinuclear clusters with
two metal-metal bonds $[\mathrm{Ru}(1)-\mathrm{Ru}(2)=2.8150(9) \AA$, $\mathrm{Ru}(1)-\mathrm{Ru}(3)=2.8217(9) \AA$ for 6 and $\mathrm{Ru}(1)-\mathrm{Ru}(2)=$ $2.8444(8) \AA$ and $\operatorname{Ru}(1)-\mathrm{Ru}(3)=2.8373(8) \AA$ for 14], a nonbonded separation of $3.5802 \AA$ for $\mathbf{6}$ and $3.626 \AA$ for $\mathbf{1 4}$ along the $R u(2)-R u(3)$ edge, seven terminal carbonyl groups, a μ_{2}-dppm and two $\mu_{3}-S$ for 6 and a μ_{3}-Se and a $\mu_{3} \mathrm{~S}$ ligands for 14. The metal-metal bond lengths are similar but very slightly shorter that those in $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ [average $2.854(4) \AA$] [29] but are comparable to the $\mathrm{Ru}-\mathrm{Ru}$ distances in $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu\right.$-dppa $\left.)\right][2.831(1)$ and $2.842(1) \AA][30]$, and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu\right.$-dppe $\left.)\right]$ [2.796(2) and 2.828(2) A] [31]. The seven carbonyl groups are distributed so that two are attached to each $\mathrm{Ru}(2)$ and $\operatorname{Ru}(3)$ and three to $\operatorname{Ru}(1)$. The diaxially coordinated dppm ligand spans the nonbonded $\mathrm{Ru}-\mathrm{Ru}$ edge. The $\mathrm{Ru}-\mathrm{P}$ distances $[\mathrm{Ru}(2)-\mathrm{P}(1)=2.3040(17) \AA$ and $\mathrm{Ru}(3)-$ $\mathrm{P}(2)=2.3046(16) \AA$ for 6 and $\mathrm{Ru}(3)-\mathrm{P}(1)=2.3014(18) \AA$, $\mathrm{Ru}(2)-\mathrm{P}(2)=2.2956(17) \AA$ for $\mathbf{1 4}]$ are slightly shorter than those found in 4 [35]. The nonbonding $\mathrm{Ru}(2) \cdots \mathrm{Ru}(3)$ separations [$3.5802 \AA$ for $\mathbf{6}$ and $3.626 \AA$ for 14] are significantly shorter than the corresponding nonbonding separation in $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu\right.$-dppe $\left.)\right]$ ($3.75 \AA$) [31] and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu-\mathrm{dppf})\right](3.87 \AA)$ [31]. In 7, the $\mathrm{Ru}-\mathrm{S}$

10

11

Scheme 6.

10

14

15

Scheme 7.
distances to the central 7-coordinate ruthenium atom $\mathrm{Ru}(1)$ $[\mathrm{Ru}(1)-\mathrm{S}(1)=2.4059(17) \AA, \mathrm{Ru}(1)-\mathrm{S}(2)=2.4244(17) \AA]$ are longer than those to the external 6 -coordinate ruthenium atoms $[2.3729(18)-2.3924(18) \AA$]. In $\mathbf{1 4}$, there is some disorder between the S and Se atoms with one site occupied by 0.83 Se and 0.17 S with the reverse in the other site. Fig. 2 shows the major occupancy labelled as $\operatorname{Se}(1)$ and $\mathrm{S}(1)$ and the minor as $\operatorname{Se}\left(1^{\prime}\right)$ and $S\left(1^{\prime}\right)$. Although the μ_{3}-selenido triruthenium complexes $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu-\mathrm{PP})\right](\mathrm{PP}=$ dppm [32,33], dppf [31], dppe [31], dppa [30] have been reported, compounds 6 and 14 provide the first S mixed S, Se analogues.

The spectroscopic data of $\mathbf{6}$ are consistent with the solidstate structure. The MS shows the molecular ion ($\mathrm{m} / \mathrm{z} 949$) and the loss of seven carbonyl groups. The ${ }^{1} \mathrm{H}$ NMR spectrum contains a triplet at $\delta 3.14(J=10.0 \mathrm{~Hz})$ for the dppm methylene. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits a singlet at $\delta 61.2$ implying one isomer with equivalent P nuclei. The $v(\mathrm{CO})$ values for $6(2054 \mathrm{~s}, 2016 \mathrm{~s}, 1984 \mathrm{~m}, 1971 \mathrm{~m}$ cm^{-1}) are very similar to those of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu-\right.$ dppa)] (2057vs, 2022m, 1988w, 1971w cm ${ }^{-1}$) [30], also a
single isomer with dppa bridging the open $\mathrm{Ru}-\mathrm{Ru}$ edge, but quite different from those of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu\right.$ dppm)](2066vs, 2052m, 2007w, 1956w cm ${ }^{-1}$), a $1: 2$ mixture of isomers in solution differing in the relative disposition of the diphosphine ligand [32]. In the major isomer dppm bridges a bonded $\mathrm{Ru}-\mathrm{Ru}$ edge and in the minor isomer two nonbonded Ru atoms.

The mass spectrum of $\mathbf{1 4}$ shows the expected parent ion at $m / z 995$, confirming that it is $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7^{-}}\right.$ $(\mu$-dppm $)]$ and is not a mixture containing $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2^{-}}\right.$ $\left.(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right]$ and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right]$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows the presence of two inseparable isomers differing in the distribution of the $\mathrm{Ru}-\mathrm{Ru}$ bonds. The major isomer $\mathbf{1 4 a}(90 \%)$ has the dppm bridging two Ru atoms not connected by a $\mathrm{Ru}-\mathrm{Ru}$ bond and gives a singlet ($\delta 63.9$) while the minor isomer $\mathbf{1 4 b}(10 \%)$ gives two doublets ($\delta 24.8$ and $15.9, J=94.0 \mathrm{~Hz}$) since the dppm is across a bonded $\mathrm{Ru}-\mathrm{Ru}$ edge. We have not confirmed experimentally that these isomers are in equilibrium but in the light of earlier results on $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}-\right.$ (μ-dppm)] [32] they are probably are (see Scheme 8). The

Fig. 1. Molecular structure of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right](6)$.

IR spectrum is similar to that of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7^{-}}\right.$ $(\mu$-dppm)], supporting the presence of two isomers in solution.

The molecular structures of $\mathbf{7}$ and $\mathbf{1 0}$ are in Figs. 3 and 4 , respectively, with data in Tables 3 and 4, respectively. There are two crystallographically independent but chemically equivalent molecules of $\mathbf{7}$. The structures of $\mathbf{7}$ and $\mathbf{1 0}$ contain one $\mu_{3}-\mathrm{E}$, a μ-dppm, seven terminal carbonyl groups and a μ_{3}-carbonyl group, being formally derived from that of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{E}\right)(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CO}\right)\right][34]$ by replacement of an equatorial carbonyl group on each of the two Ru atoms by the dppm ligand. The complexes display tetrahedral $\mathrm{Ru}_{3} \mathrm{E}$ cores with almost equilatorial Ru_{3} triangles $[\mathrm{Ru}(1)-\mathrm{Ru}(3)=2.8103(13) \AA, \quad \mathrm{Ru}(2)-\mathrm{Ru}(3)=2.8122$ (15) \AA and $\mathrm{Ru}(1)-\mathrm{Ru}(2)=2.7976(14) \AA$ for 7 and $\mathrm{Ru}(2)-$ $\mathrm{Ru}(3)=2.7964(3) \AA, \quad \operatorname{Ru}(1)-\mathrm{Ru}(3)=2.8071(3) \AA \quad$ and $\operatorname{Ru}(1)-\operatorname{Ru}(2)=2.8184(3) \AA$ for 10] symmetrically capped by chalcogenido ligands $[\mathrm{Ru}(1)-\mathrm{S}(1)=2.362(3) \AA, \mathrm{Ru}(2)-$ $\mathrm{S}(1)=2.369(3) \AA$ and $\operatorname{Ru}(3)-\mathrm{S}(1)=2.368(3) \AA$ for 7 and $\operatorname{Ru}(1)-\operatorname{Se}(1)=2.4844(4) \AA, \quad \operatorname{Ru}(3)-\operatorname{Se}(1)=2.4901(4) \AA$ and $\operatorname{Ru}(2)-\operatorname{Se}(1)=2.4935(4) \AA$ for 10]. Three of seven terminal carbonyl groups are bound to the $\mathrm{Ru}(1)$ atom and two to each of the other two Ru atoms. The triply-bridging carbonyl groups are asymmetrically attached $[\mathrm{Ru}(2)-$ $\mathrm{C}(1)=2.105(11) \AA, \mathrm{Ru}(1)-\mathrm{C}(1)=2.273(10) \AA$ and $\mathrm{Ru}(3)-$ $\mathrm{C}(1)=2.204(11) \AA$ for 7 and $\mathrm{Ru}(1)-\mathrm{C}(8)=2.242(3) \AA$, $\mathrm{Ru}(2)-\mathrm{C}(8)=2.157(3) \AA$ and $\mathrm{Ru}(3)-\mathrm{C}(8)=2.150(3) \AA$ for 10]. The Ru-P bond distances $[R u(2)-P(1)=2.334(3) \AA$ and $\mathrm{Ru}(3)-\mathrm{P}(2)=2.367(3) \AA$ for 7 and $\mathrm{Ru}(2)-\mathrm{P}(1)=$ $2.3209(8) \AA$ and $\mathrm{Ru}(3)-\mathrm{P}(2)=2.3336(8) \AA$ for 10$]$ are comparable to those in 4 [2.322(2) and $2.334(2) \AA$] [35].

Chalcogenido compounds $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{E}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{PP})\right]$ $(\mathrm{PP}=\mathrm{dppm}$, dppe, dppa, dppf; $\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te}$) have not previously been reported.

The mass spectra of $\mathbf{7}$ and $\mathbf{1 0}$ show the molecular ion peaks ($\mathrm{m} / \mathrm{z} 945$ for 7 and 991 for 10) with successive loss of seven carbonyl groups, while IR and NMR spectra of 7 and $\mathbf{1 0}$ show the solid-state structures persist in solution. The IR carbonyl absorptions show a pattern similar to that reported for the corresponding osmium analogues $\left[\mathrm{Os}_{3}-\right.$ $\left.\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right][14]$ and $\left[\mathrm{Os}_{3}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7^{-}}\right.$ $\left.\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right][38]$. The presence of μ_{3} carbonyl groups in 7 and 10 are apparent from the $v(\mathrm{CO})$ bands at $1736 \mathrm{~cm}^{-1}$ for 7 and $1655 \mathrm{~cm}^{-1}$ for $\mathbf{1 0}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra contain a singlet at $\delta 25.6$ for 7 and 25.9 for $\mathbf{1 0}$ indicating equivalent ${ }^{31} \mathrm{P}$ nuclei.

The molecular structure of $\mathbf{8}$ (Fig. 5 and Table 5) consists of a Ru_{3} triangle with three metal-metal bonds $[\mathrm{Ru}(1)-\mathrm{Ru}(2)=2.7874(4) \AA, \quad \mathrm{Ru}(1)-\mathrm{Ru}(3)=2.8151(4) \AA$ and $\operatorname{Ru}(2)-\operatorname{Ru}(3)=2.8231(4) \AA]$. It is a structurally unique compound with seven terminal carbonyls and one triply bridging carbonyl, a capping S, and a tetramethyldiaminocarbene ligand. The structure of this molecule relates to that of 7 except for tetramethyldiaminocarbene ligand. The $\mathrm{Me}_{2} \mathrm{NCNMe}_{2}$ ligand formed by $\mathrm{C}=\mathrm{S}$ bond cleavage of the tetramethylthiourea is coordinated equatorially at $\mathrm{Ru}(3)$. The Ru -carbene distance, $\mathrm{Ru}(3)-\mathrm{C}(3)=2.122(4) \AA$, is comparable to similar bonds in the tetraruthenium complexes $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}(\mu-\mathrm{CO})_{2}\left\{\left(\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}_{2}\right]\right.$ [2.053(9) and $2.085(9) \AA$] [3] and $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mathrm{CO})_{8}(\mu-\mathrm{CO})_{2}\{(\mathrm{C}(\mathrm{N}-\right.$ $\left.\left.\mathrm{Me}_{2}\right)_{2}\right\}$] [2.086(4) \AA] [3] obtained by treating $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right.$] with tetramethylthiourea. The carbene $\mathrm{C}-\mathrm{N}$ distances,

Table 1
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}(\mu\right.$-dppm $\left.)\right]$ (6)

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.8150(9)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.8217(9)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$3.5802(8)$
$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.4059(17)$
$\mathrm{Ru}(1)-\mathrm{S}(2)$	$2.4244(17)$
$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.3844(19)$
$\mathrm{Ru}(2)-\mathrm{S}(2)$	$2.3834(19)$
$\mathrm{Ru}(3)-\mathrm{S}(1)$	$2.3924(18)$
$\mathrm{Ru}(3)-\mathrm{S}(2)$	$2.3729(18)$
$\mathrm{Ru}(2)-\mathrm{P}(1)$	$2.3040(17)$
$\mathrm{Ru}(3)-\mathrm{P}(2)$	$2.3046(16)$
$\mathrm{P}(1)-\mathrm{C}(12)$	$1.866(7)$
$\mathrm{P}(2)-\mathrm{C}(12)$	$1.846(6)$
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$78.86(3)$
$\mathrm{Ru}(2)-\mathrm{S}(1)-\mathrm{Ru}(1)$	$71.98(5)$
$\mathrm{Ru}(3)-\mathrm{S}(2)-\mathrm{Ru}(2)$	$97.65(6)$
$\mathrm{Ru}(2)-\mathrm{S}(2)-\mathrm{Ru}(1)$	$71.67(5)$
$\mathrm{Ru}(2)-\mathrm{S}(1)-\mathrm{Ru}(3)$	$97.09(6)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(3)$	$72.04(5)$
$\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{Ru}(3)$	$72.05(5)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$53.76(4)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$53.66(4)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$54.36(4)$
$\mathrm{S}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$54.20(4)$
$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$53.49(4)$
$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$53.13(4)$
$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$54.84(4)$
$\mathrm{S}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$54.82(4)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{S}(2)$	$79.30(6)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{S}(2)$	$80.55(6)$
$\mathrm{S}(1)-\mathrm{Ru}(3)-\mathrm{S}(2)$	$80.60(6)$
$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{S}(2)$	$96.25(6)$
$\mathrm{P}(2)-\mathrm{Ru}(3)-\mathrm{S}(1)$	$92.03(6)$
$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$137.02(5)$
$\mathrm{P}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$135.34(5)$

Table 2
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}(\mu-\right.$ dppm)] (14)

$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.8373(8)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.8444(8)$
$\mathrm{Ru}(1)-\mathrm{Se}(1)$	$2.5240(9)$
$\mathrm{Ru}(2)-\mathrm{Se}(1)$	$2.4760(10)$
$\mathrm{Ru}(3)-\mathrm{Se}(1)$	$2.4756(10)$
$\mathrm{Ru}(3)-\mathrm{P}(1)$	$2.3014(18)$
$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.2956(17)$
$\mathrm{Ru}(3)-\mathrm{S}(1)$	$2.4182(16)$
$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.4262(15)$
$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.4328(13)$
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$79.31(2)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$54.06(4)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$53.97(4)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$54.28(3)$
$\mathrm{S}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$54.45(3)$
$\mathrm{Se}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$54.62(2)$
$\mathrm{Se}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$54.54(2)$
$\mathrm{Se}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$56.13(2)$
$\mathrm{Se}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$56.23(2)$
$\mathrm{Ru}(2)-\mathrm{Se}(1)-\mathrm{Ru}(1)$	$69.34(3)$
$\mathrm{Ru}(3)-\mathrm{Se}(1)-\mathrm{Ru}(1)$	$69.14(3)$
$\mathrm{Ru}(3)-\mathrm{Se}(1)-\mathrm{Ru}(2)$	$94.15(3)$
$\mathrm{Ru}(3)-\mathrm{S}(1)-\mathrm{Ru}(2)$	$96.91(5)$
$\mathrm{Ru}(2)-\mathrm{S}(1)-\mathrm{Ru}(1)$	$71.66(4)$
$\mathrm{Ru}(3)-\mathrm{S}(1)-\mathrm{Ru}(1)$	$71.59(4)$
$\mathrm{P}(1)-\mathrm{C}(8)-\mathrm{P}(2)$	$121.2(3)$

$\mathrm{C}(33)-\mathrm{N}(1)=1.355(5) \AA$ and $\mathrm{C}(33)-\mathrm{N}(2)=1.345(5) \AA$, are characteristic of terminally coordinated aminocarbenes $[36,37]$. The $\mu_{3}-\mathrm{S}$ ligand symmetrically caps the Ru_{3} triangle with $\mathrm{Ru}-\mathrm{S}$ distances in the narrow range 2.3744(9)$2.3821(10) \AA$. The μ_{3}-CO group is also bonded symmetrically. The higher electron density at $\mathrm{Ru}(3)$ caused by the

Fig. 2. Molecular structure of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right](14)$.

Scheme 8.
carbene ligand is most probably distributed over the whole ruthenium framework to result in nearly symmetrical carbonyl and S bridges in contrast to 7 where these bridges are unsymmetrical. The $\mathrm{Ru}-\mathrm{P}$ distances in $\mathbf{8}[\mathrm{Ru}(1)-$ $\mathrm{P}(1)=2.3419(11) \AA, \mathrm{Ru}(2)-\mathrm{P}(2)=2.3211(11) \AA]$ are comparable to those in 4 [35].

The IR spectrum of $\mathbf{8}$ shows a band at $1642 \mathrm{~cm}^{-1}$ for the μ_{3}-carbonyl ligand while the mass spectrum shows the molecular ion at $m / z 1017$ which loses seven carbonyl groups sequentially. The ${ }^{1} \mathrm{H}$ NMR spectrum contains three

Fig. 3. Molecular structure of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right]$ (7).

Fig. 4. Molecular structure of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right](\mathbf{1 0})$.

Table 3
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[R u_{3}\left(\mu_{3}-S\right)(C O)_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\right.$ dppm)] (7)

	Molecule 1	Molecule 2
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.7976(14)$	$2.8129(14)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.8103(13)$	$2.8021(13)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.8122(15)$	$2.8080(14)$
$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.362(3)$	$2.365(3)$
$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.369(3)$	$2.372(3)$
$\mathrm{Ru}(3)-\mathrm{S}(1)$	$2.368(3)$	$2.367(3)$
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$2.273(10)$	$2.272(9)$
$\mathrm{Ru}(2)-\mathrm{C}(1)$	$2.105(11)$	$2.155(10)$
$\mathrm{Ru}(3)-\mathrm{C}(1)$	$2.204(11)$	$2.154(10)$
$\mathrm{Ru}(2)-\mathrm{P}(1)$	$2.334(3)$	$2.344(3)$
$\mathrm{Ru}(3)-\mathrm{P}(2)$	$2.367(3)$	$2.335(3)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$53.87(7)$	$53.68(7)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$53.57(7)$	$53.59(7)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$53.65(7)$	$53.72(7)$
$\mathrm{S}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$53.60(7)$	$53.74(7)$
$\mathrm{S}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$53.44(7)$	$53.67(7)$
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$50.0(3)$	$48.9(3)$
$\mathrm{C}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$50.8(3)$	$49.3(3)$
$\mathrm{C}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$47.7(3)$	$49.4(3)$
$\mathrm{C}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$52.2(3)$	$52.6(3)$
$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$92.08(8)$	$94.54(7)$
$\mathrm{P}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$93.82(8)$	$92.92(7)$

multiplets at $\delta 7.32,3.88,3.44$ and a singlet at $\delta 3.26$ in a relative intensity of 20:1:1:12 corresponding, respectively, to Ph , the non-equivalent CH_{2} protons of dppm, and the Me of the carbene ligand. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum contains a singlet at $\delta 28.5$ indicating that the ${ }^{31} \mathrm{P}$ nuclei are equivalent. These solution data fit a structure like that found in the crystal.

Crystals of 9 suitable for XRD studies were unobtainable and spectroscopic data do not provide a unique structure.

Table 4
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[R u_{3}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\right.$ dppm)] (10)

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.8184(3)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.8071(3)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.7964(3)$
$\mathrm{Ru}(1)-\mathrm{Se}(1)$	$2.4844(4)$
$\mathrm{Ru}(3)-\mathrm{Se}(1)$	$2.4901(4)$
$\mathrm{Ru}(2)-\mathrm{Se}(1)$	$2.4935(4)$
$\mathrm{Ru}(1)-\mathrm{C}(8)$	$2.242(3)$
$\mathrm{Ru}(3)-\mathrm{C}(8)$	$2.150(3)$
$\mathrm{Ru}(2)-\mathrm{C}(8)$	$2.157(3)$
$\mathrm{Ru}(2)-\mathrm{P}(1)$	$2.3209(8)$
$\mathrm{Ru}(3)-\mathrm{P}(2)$	$2.3336(8)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.844(3)$
$\mathrm{P}(2)-\mathrm{C}(9)$	$1.846(3)$
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$59.991(8)$
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$59.616(8)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$60.393(8)$
$\mathrm{Se}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$55.364(10)$
$\mathrm{Se}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(2)$	$55.669(9)$
$\mathrm{Se}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$55.925(9)$
$\mathrm{Se}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$55.742(9)$
$\mathrm{Se}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$55.551(10)$
$\mathrm{Se}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$55.808(9)$
$\mathrm{C}(8)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$48.86(8)$
$\mathrm{C}(8)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$48.83(8)$
$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$49.61(8)$
$\mathrm{C}(8)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$49.42(8)$
$\mathrm{C}(8)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$51.49(8)$
$\mathrm{Ru}(1)-\mathrm{Se}(1)-\mathrm{Ru}(3)$	$68.707(11)$
$\mathrm{Ru}(3)-\mathrm{Se}(1)-\mathrm{Ru}(2)$	$68.267(10)$
$\mathrm{Ru}(1)-\mathrm{Se}(1)-\mathrm{Ru}(2)$	$68.968(11)$
$\mathrm{Ru}(2)-\mathrm{C}(8)-\mathrm{Ru}(1)$	$79.68(10)$
$\mathrm{Ru}(3)-\mathrm{C}(8)-\mathrm{Ru}(2)$	$80.97(11)$
$\mathrm{Ru}(3)-\mathrm{C}(8)-\mathrm{Ru}(1)$	$79.42(10)$
$\mathrm{P}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$96.688(19)$
$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$113.53(2)$
$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{P}(2)$	

Fig. 5. Molecular structure of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{CO}\right)\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mu-\mathrm{dppm})\right](\mathbf{8})$.

Table 5
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{Ru}_{3}\left(\mu_{3}-S\right)\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}\right.$ -$\left.(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right](8)$

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.7874(4)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.8151(4)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.8231(4)$
$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.3744(9)$
$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.3821(10)$
$\mathrm{Ru}(3)-\mathrm{S}(1)$	$2.3795(11)$
$\mathrm{Ru}(1)-\mathrm{C}(7)$	$2.197(4)$
$\mathrm{Ru}(2)-\mathrm{C}(7)$	$2.180(4)$
$\mathrm{Ru}(3)-\mathrm{C}(7)$	$2.154(4)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.150(5)$
$\mathrm{N}(1)-\mathrm{C}(33)$	$1.355(5)$
$\mathrm{N}(2)-\mathrm{C}(33)$	$1.345(5)$
$\mathrm{N}(1)-\mathrm{C}(35)$	$1.464(6)$
$\mathrm{N}(1)-\mathrm{C}(34)$	$1.461(6)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.3419(11)$
$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.3211(11)$
$\mathrm{P}(1)-\mathrm{C}(20)$	$1.842(4)$
$\mathrm{P}(2)-\mathrm{C}(20)$	$1.831(4)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$59.258(10)$
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$60.515(10)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$60.227(10)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(3)$	$72.62(3)$
$\mathrm{Ru}(3)-\mathrm{S}(1)-\mathrm{Ru}(2)$	$72.72(3)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(2)$	$71.75(3)$
$\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{Ru}(1)$	$80.62(14)$
$\mathrm{Ru}(2)-\mathrm{C}(7)-\mathrm{Ru}(1)$	$79.10(14)$
$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$50.36(11)$
$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$49.76(11)$
$\mathrm{C}(7)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$50.18(10)$
$\mathrm{S}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$53.68(2)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$54.25(2)$
$\mathrm{S}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$53.61(2)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$54.00(2)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$53.60(3)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$53.77(3)$
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$90.00(3)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	
$\mathrm{P}(2)-\mathrm{C}(20)-\mathrm{P}(1)$	$9.93)$
$\mathrm{N}(1)-\mathrm{C}(33)-\mathrm{Ru}(3)$	C
$\mathrm{N}(2)-\mathrm{C}(33)-\mathrm{N}(1)$	

The structure of $\mathbf{9}$ is therefore based on comparison of spectra with those of the corresponding mixed $\mathrm{S}-\mathrm{Se}$ analogue 15, the XRD structure of which we report in this paper. The IR spectra of $\mathbf{9}$ and $\mathbf{1 5}$ are very similar, indicating that they are isostructural. The FAB MS shows the molecular ion ($\mathrm{m} / \mathrm{z} 1021$) and the stepwise loss of up to six carbonyl groups. The ${ }^{1} \mathrm{H}$ NMR spectrum shows three multiplets at $\delta 7.48,4.33,3.83$ and a singlet at $\delta 3.38$ in a $20: 1: 1: 12$ intensity ratio assigned, respectively, to Ph , non-equivalent CH_{2} protons of dppm and Me of $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{C}$.

The IR spectrum for 11 exhibits a bridging carbonyl band at $1740 \mathrm{~cm}^{-1}$ and the ${ }^{1} \mathrm{H}$ NMR spectrum in the aromatic region is characteristic of an orthometallated phenyl ring. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum contains two doublets $(J=102.0 \mathrm{~Hz})$ of equal intensity at $\delta 22.6$ and 138.3 due to the magnetically non-equivalent ${ }^{31} \mathrm{P}$ nuclei of the ligand. The signal at $\delta 22.6$ is due to the terminal phosphorus atom while the low field signal at $\delta 138.3$ is characteristic of a phosphorus atom bridging a metal-metal bond. The ${ }^{31} \mathrm{P}$
chemical shifts are close to those reported for structurally characterized orthometallated compound $\left[\mathrm{Ru}_{3}\left\{\mu_{3}-\eta^{3}\right.\right.$ $\left.\left.\mathrm{PhPCH}_{2} \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}(\mathrm{CO})_{9}\right]\left[\begin{array}{lll}\delta & 2.9 & \text { (d), } 117.3 \text { (d), } \quad J= \\ \hline\end{array}\right.$ $85.0 \mathrm{~Hz})$], [9] suggesting the presence of a $\mu_{3}-\eta^{3}$ $\mathrm{PhPCH}_{2} \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ ligand in 11. The mass spectrum shows the parent at $m / z 885$ and fragments ions formed by the sequential loss of one Ph and seven carbonyl groups. Most probably $\mathbf{1 1}$ is formed by the reaction of the orthometallated compound $\left[\mathrm{Ru}_{3}\left\{\mu_{3}-\eta^{3}-\mathrm{PhPCH}_{2} \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}(\mathrm{CO})_{9}\right]$, formed in situ from the thermolysis of $\mathbf{4}$, with selenium but we have not demonstrated this.

The solid-state molecular structure of $\mathbf{1 5}$ (Fig. 6 and Table 6) consists of an open $R u_{3}$ triangle with six terminal carbonyl groups, a triply-bridging S, a triply-bridging Se, a bridging dppm and a tetramethyldiaminocarbene ligand. As with $\mathbf{8}$, the tetramethyldiaminocarbene ligand is derived from $\mathrm{C}=\mathrm{S}$ cleavage in the tetramethylthiourea ligand. Compound $\mathbf{1 5}$ is simply a tetramethyldiaminocarbenesubstitution product of $\mathbf{1 4}$ but the replacement of CO by the carbene has significantly affected the geometry. There appears to be complete disorder between S and Se in compound 15 and the model was refined with 50% of each atom with identical coordinates in each site. The dppm coordination has shifted from the open metal-metal edge to the bonded $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ edge with $\mathrm{Ru}-\mathrm{P}$ distances $[\mathrm{Ru}(1)-$ $\mathrm{P}(2)=2.329(2) \AA$ and $\mathrm{Ru}(2)-\mathrm{P}(1)=2.318(2) \AA]$ similar to those in 4. The dppm-bridged $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ distance of $2.7801(16) \AA$ is significantly shorter than the nonbridged $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ distance of $2.8313(15) \AA$. The diaminocarbene ligand is coordinated equatorially to $\mathrm{Ru}(3)$ and the $\mathrm{Ru}(3)-\mathrm{C}(1)$ distance of $2.078(7) \AA$ is shorter than the corresponding distance in $\mathbf{8}$ but very similar to the osmiumcarbene distance in $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{8}\left\{\mu-\eta^{3}-\mathrm{CN}(\mathrm{Me})-\right.\right.$ $\mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})\}][2.07(1) \AA][36]$. The carbene $\mathrm{C}-\mathrm{N}$ bond lengths are similar to those in $\mathbf{8}$. The $\mu_{3}-\mathrm{S}$ ligand is bonded symmetrically with the three $\mathrm{Ru}-\mathrm{S}$ distances in the range 2.4904(8)-2.5083(7) \AA, whereas μ_{3}-Se ligand caps the $R u_{3}$ core asymmetrically with the three $\mathrm{Ru}-\mathrm{Se}$ distances ranging from $2.4648(15)$ to $2.5242(16) \AA$.

The IR spectrum of $\mathbf{1 5}$ shows only terminal carbonyl groups. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum contains two doublets at $\delta 23.6$ and 14.2 , indicating non-equivalent ${ }^{31} \mathrm{P}$ nuclei. The mass spectrum shows the parent at $m / z 1068$. Compound $\mathbf{1 5}$ provides the first example of a structurally characterized 50 -electron triruthenium cluster containing capping S / Se and a diphosphine bridging a bonded pair of Ru atoms. The coordination of the dppm ligand is structurally similar to that which has recently been reported for the 50 -electron compound $\left[\mathrm{Os}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right]$ [38].

3. Conclusions

Our results on the treatment of $\mathbf{4}$ with tetramethylthiourea are summarised in Scheme 4 while those with elemental Se are in Scheme 6. Compounds $\mathbf{6}$ and $\mathbf{1 4}$ have bicapped open triangular structures with nido $\mathrm{Ru}_{3} \mathrm{EE}^{\prime}$ cores ($\mathbf{6}$,

Fig. 6. Molecular structure of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}(\mu\right.$-dppm) $](\mathbf{1 5})$.

Table 6
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{Ru}_{3}\left(\mu_{3}-S\right)\left(\mu_{3}-S e\right)\left\{\eta^{1}-\right.\right.$ $\left.\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}(\mu$-dppm $\left.)\right](\mathbf{1 5)}$

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.7808(16)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.8313(15)$
$\mathrm{Ru}(1)-\mathrm{S}(1) / \mathrm{Se}(1)$	$2.4904(18)$
$\mathrm{Ru}(1)-\mathrm{S}(2) / \mathrm{Se}(2)$	$2.4648(15)$
$\mathrm{Ru}(2)-\mathrm{S}(1) / \mathrm{Se}(1)$	$2.5083(17)$
$\mathrm{Ru}(2)-\mathrm{S}(2) / \mathrm{Se}(2)$	$2.5242(16)$
$\mathrm{Ru}(3)-\mathrm{S}(2) / \mathrm{Se}(2)$	$2.4803(17)$
$\mathrm{Ru}(3)-\mathrm{S}(1) / \mathrm{Se}(1)$	$2.5028(17)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.329(2)$
$\mathrm{Ru}(2)-\mathrm{P}(1)$	$2.318(2)$
$\mathrm{Ru}(3)-\mathrm{C}(1)$	$2.078(7)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.479(10)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.348(10)$
$\mathrm{N}(2)-\mathrm{C}(5)$	$1.486(10)$
$\mathrm{N}(2)-\mathrm{C}(4)$	$1.443(12)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.367(10)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.461(11)$
$\mathrm{Ru}(1)-\mathrm{S}(2) / \mathrm{Se}(2)-\mathrm{Ru}(2)$	$67.72(5)$
$\mathrm{Ru}(1)-\mathrm{S}(1) / \mathrm{Se}(1)-\mathrm{Ru}(2)$	$67.58(4)$
$\mathrm{Ru}(1)-\mathrm{S}(2) / \mathrm{Se}(2)-\mathrm{Ru}(3)$	$98.36(6)$
$\mathrm{Ru}(3)-\mathrm{S}(2) / \mathrm{Se}(2)-\mathrm{Ru}(2)$	$68.90(4)$
$\mathrm{S}(2) / \mathrm{Se}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$57.16(3)$
$\mathrm{S}(1) / \mathrm{Se}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$56.52(4)$
$\mathrm{S}(1) / \mathrm{Se}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$55.90(5)$
$\mathrm{S}(2) / \mathrm{Se}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$54.82(3)$
$\mathrm{S}(2) / \mathrm{Se}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$56.28(4)$
$\mathrm{S}(1) / \mathrm{Se}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$55.51(4)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$99.23(5)$
$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$87.16(6)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$83.56(5)$
$\mathrm{C}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$144.65(19)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$114.1(7)$
$\mathrm{S}(2) / \mathrm{Se}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$55.12(4)$
$\mathrm{Ru}(3)-\mathrm{S}(1) / \mathrm{Se}(1)-\mathrm{Ru}(2)$	$68.80(5)$
$\mathrm{Ru}(1)-\mathrm{S}(1) / \mathrm{Se}(1)-\mathrm{Ru}(3)$	$97.09(7)$
$\mathrm{S}(1) / \mathrm{Se}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$55.69(4)$

$\left.\mathrm{E}=\mathrm{E}^{\prime}=\mathrm{S} ; \mathbf{1 4}, \mathrm{E}=\mathrm{S}, \mathrm{E}^{\prime}=\mathrm{Se}\right)$. A dppm spans the nonbonded metal-metal edge. The structures could be described as a square pyramid with two Ru and two S / Se alternating in the basal plane with the third Ru atom at the apex. In sharp contrast to the reaction of $\mathbf{1}$ with tetramethylthiourea which affords two isomeric forms of the nido cluster $\left[\mathrm{Os}_{3}(\mu-\mathrm{S})_{2}(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right]$, the reaction of 4 with tetramethylthiourea gives four triruthenium clusters 5 to 8 containing bridging dppm and capping S ligands, the latter from $\mathrm{C}=\mathrm{S}$ bond cleavage. Compounds $\mathbf{7}$ and $\mathbf{1 0}$ contain $\mu_{3}-\mathrm{CO}$ on one face and a $\mu_{3}-\mathrm{S}$ or Se on the opposite face and a bridging dppm. They both display tetrahedral $\mathrm{Ru}_{3} \mathrm{E}(\mathrm{E}=\mathrm{S}$ or Se$)$ cores. Compound 8 represents an unusual example of a S-capped Ru_{3} cluster containing a diaminocarbene ligand. Cluster 7 can formally be derived from $\mathbf{8}$ by replacement of the diaminocarbene ligand by CO.

In contrast to the reaction of elemental Se with 1 which gave intractible materials, it reacts with 4 to give three new Ru_{3} selenido clusters $\mathbf{1 0} \mathbf{- 1 2}$ and the previously reported cubane cluster 13. Further reaction of $\mathbf{1 0}$ with elemental Se does not produce $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7}(\mu\right.$-dppm $\left.)\right]$ whereas with tetramethylthiourea the mixed S / Se compound $\mathbf{1 4}$ is formed.

4. Experimental

Although the products are air-stable, all reactions were performed under an atmosphere of nitrogen. THF, toluene, heptane and hexane were dried over sodium and distilled from sodium benzophenone ketyl under nitrogen immediately prior to use. Methylene chloride was freshly distilled from calcium hydride before use. IR spectra were recorded on a Shimadzu FTIR 1401 spectrometer, NMR spectra on a Bruker 400 or AM-300 or Varian Unity Plus

400 spectrometers. ${ }^{31} \mathrm{P}$ NMR chemical shifts are relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external reference) and ${ }^{1} \mathrm{H}$ chemical shifts are referenced against residual protonated solvent. Fast atom bombardment mass spectra were obtained on a JEOL SX-102 spectrometer using 3-nitrobenzyl alcohol as matrix and CsI as calibrant. The cluster $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mu\right.$-dppm) $)(4)$ was prepared by a published procedure [39].

4.1. Reaction of $\left[R u_{3}(C O)_{10}(\mu\right.$-dppm $\left.)\right]$ (4) with tetramethylthiourea

A THF solution (35 ml) of $4(0.300 \mathrm{~g}, 0.31 \mathrm{mmol})$ and tetramethylthiourea $(0.161 \mathrm{~g}, 1.22 \mathrm{mmol})$ was refluxed for 6 h . The solvent was pumped off and the residue chromatographed (TLC on silica gel). Elution with cyclohexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3, \mathrm{v} / \mathrm{v})$ developed four bands. The first band afforded $\quad\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right] \quad$ (5) (0.017 g , 6%) as red crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at room temperature. The second band yielded $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right]$ (6) $(0.030 \mathrm{~g}, 10 \%)$ as red crystals from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ (Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}_{2}$: $\mathrm{C}, 40.55 ; \mathrm{H}$, 2.34. Found: $\mathrm{C}, 40.65 ; \mathrm{H}, 2.78 \%)$. $\mathrm{IR}\left(v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $2054 \mathrm{~s}, 2016 \mathrm{~s}, 1984 \mathrm{~m}, 1971 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $7.36(\mathrm{~m}, 20 \mathrm{H}), 3.14(\mathrm{t}, \quad J=10.0 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 61.2$ (s). FAB MS: m / z 949. The third band yielded $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dppm})\right]$ (7) $(0.095 \mathrm{~g}$, 32%) as yellow crystals from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ (Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}$: C, 42.00; H, 2.35. Found: C, $42.15 ; \mathrm{H}, 2.49 \%$). IR ($v \mathrm{CO}$, hexane): 2072s, 2026vs, 2007s, 1980m, 1736br cm ${ }^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $7.34(\mathrm{~m}, 20 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 30.2(\mathrm{~s})$. FAB MS: $m / z 945\left(\mathrm{M}^{+}\right)$. The fourth band gave $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}\left(\mu_{3}-\right.\right.$ $\mathrm{CO})(\mu-\mathrm{dppm})](\mathbf{8})(0.028 \mathrm{~g}, 9 \%)$ as orange crystals from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4{ }^{\circ} \mathrm{C}$ (Anal. Calc. for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7^{-}}$ $\mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}: \mathrm{C}, 43.74 ; \mathrm{H}, 3.37 ; \mathrm{N}, 2.76$. Found: C, 43.98; H, 3.67 ; N, 2.82%). IR ($v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2021s, 1996vs, $1985 \mathrm{~m}, 1954 \mathrm{~s}, 1942 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.32$ $(\mathrm{m}, 20 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 28.5$ (s). FAB MS: $m / z 1017$.

4.2. Reaction of $\mathbf{4}$ with thiourea

A mixture of $4(0.100 \mathrm{~g}, 0.103 \mathrm{mmol})$ and thiourea ($0.015 \mathrm{~g}, 0.197 \mathrm{mmol}$) in THF (25 ml) was refluxed for 1 h . The solvent was pumped off and the residue chromatographed (TLC on silica gel). Elution with cyclohexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3, \mathrm{v} / \mathrm{v})$ developed two bands affording 5 $(0.029 \mathrm{~g}, 30 \%)$ and $7(0.009 \mathrm{~g}, 10 \%)$.

4.3. Reaction of 7 with tetramethylthiourea

A THF solution $(25 \mathrm{ml})$ of $7(0.100 \mathrm{~g}, 0.103 \mathrm{mmol})$ and tetramethylthiourea $(0.027 \mathrm{~g}, 0.204 \mathrm{mmol})$ was refluxed for 4 h . Chromatographic separation as above afforded unconsumed $7(0.035 \mathrm{~g}), 6(0.030 \mathrm{~g}, 30 \%)$, and a new compound $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}\left\{\eta^{1}-\mathrm{C}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}(\mu-\mathrm{dppm})\right]$ (9)
($0.009 \mathrm{~g}, 8 \%$) (Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}_{2}$: C, 42.39; H, 3.36; N, 2.75. Found: C, 42.45; H, 3.65; N, 2.84%), IR ($v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2012s, 1987vs, 1973s, 1939s $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.48(\mathrm{~m}, 20 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H})$, $3.83(\mathrm{~m}, 1 \mathrm{H}) 3.38(\mathrm{~s}, 12 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $28.1(\mathrm{~d}, J=51.5 \mathrm{~Hz}), 18.5(\mathrm{~d}, J=51.5 \mathrm{~Hz})$. FAB MS: $m / z 1021\left(\mathrm{M}^{+}\right)$.

4.4. Thermolysis of $\mathbf{8}$

A THF solution (15 ml) of $\mathbf{8}(0.020 \mathrm{~g}, 0.019 \mathrm{mmol})$ was refluxed for 5 h . The solvent was pumped off and the residue chromatographed as above to give $7(0.011 \mathrm{~g}, 55 \%)$.

4.5. Reaction of $\mathbf{4}$ with elemental selenium

A THF solution (35 ml) of $4(0.200 \mathrm{~g}, 0.210 \mathrm{mmol})$ and elemental $\mathrm{Se}(0.032 \mathrm{~g}, 0.417 \mathrm{mmol})$ was refluxed under N_{2} for 5 h . The solvent was pumped off and the residue chromatographed (TLC on silica gel). Elution with cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3 \mathrm{~g} \mathrm{v} / \mathrm{v})$ developed four bands. The first band yielded $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{CO}\right)(\mu\right.$-dppm) $] \quad(\mathbf{1 0})$ $(0.060 \mathrm{~g}, 29 \%)$ as orange crystals from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $5^{\circ} \mathrm{C}$ (Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{Se}: \mathrm{C}, 40.01 ; \mathrm{H}$, 2.24. Found: $\mathrm{C}, 40.23 ; \mathrm{H}, 2.42 \%)$. IR $\left(v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 2069s, 2023vs, 2000s, $1971 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $7.34(\mathrm{~m}, 20 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta 25.9$ (s). Mass spectrum: $m / z 991\left(\mathrm{M}^{+}\right)$. The second band gave $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{6}(\mu-\mathrm{CO})\left\{\mu_{3}-\eta^{3}-\right.\right.$ $\left.\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\right](11)(0.010 \mathrm{~g}, 5 \%)$ as yellow needles from hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $5^{\circ} \mathrm{C}$ (Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{Se}: \mathrm{C}, 35.30$; $\mathrm{H}, 1.82$. Found: C, 35.52; $\mathrm{H}, 2.02 \%$). IR ($v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2079s, 2046vs, 2023vs, 2008w, 1992m cm ${ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.53(\mathrm{~m}, 14 \mathrm{H})$, $3.89(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 22.6(\mathrm{~d}, J=102.0 \mathrm{~Hz}), 138.3(\mathrm{~d}, J=102.0 \mathrm{~Hz}) ; \mathrm{FAB}$ MS: m / z 885. The third and the fourth bands gave the known compounds $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right](\mathbf{1 2})$ $(0.004 \mathrm{~g}, \quad 2 \%)$ and $\left[\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{Se}\right)_{4}(\mathrm{CO})_{10}(\mu-\mathrm{dppm})\right]$ (13) $(0.003 \mathrm{~g}, 5 \%)$, respectively as yellow crystals from hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $5^{\circ} \mathrm{C}$.

4.6. Reaction of $\mathbf{1 0}$ with tetramethylthiourea

A solution of $\mathbf{1 0}(0.100 \mathrm{~g}, 0.101 \mathrm{mmol})$ and tetramethylthiourea ($0.027 \mathrm{~g}, 0.204 \mathrm{mmol}$) in THF (30 ml) was refluxed for 8 h . The solvent was pumped off and the residue chromatographed (TLC on silica gel). Elution with cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 2, \mathrm{v} / \mathrm{v})$ developed two bands. The major band afforded $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{7}(\mu-\mathrm{dppm})\right] \quad$ (14) $(0.038 \mathrm{~g}, 38 \%)$ as yellow crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $-15{ }^{\circ} \mathrm{C}$ (Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{SSe}$: C, $38.64 ; \mathrm{H}$, 2.23. Found: $\mathrm{C}, 38.81 ; \mathrm{H}, 2.34 \%)$. $\mathrm{IR}\left(v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 2067w, 2052vs, 2016vs, 1986m, 1956m cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.33(\mathrm{~m}, 20 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H})$, $3.22(\mathrm{t}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major isomer δ $63.9(\mathrm{~s})$; minor isomer $24.8(\mathrm{~d}, J=94.0 \mathrm{~Hz}), 15.9(\mathrm{~d}$,

Table 7
Crystal data and structure refinement for $\mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{1 0}, 14$ and 15

Compound	6	7	8 - $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10	14	15
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}_{2}$	$\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}$	$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}$	$\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{Se}$	$\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{SSe}$	$\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{SSe}$
Formula weight	947.77	943.72	1100.80	990.62	994.67	1066.82
Temperature (K)	293(2)	150(2)	150(2)	150(2)	150(2)	150(2)
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	I2/a	$P \overline{1}$	$P 2{ }_{1} / c$	$P \overline{1}$	I2/a	$P \overline{1}$
$a(\mathrm{~A})$	22.270(6)	9.056(2)	21.3770(3)	9.16270(10)	22.1940(5)	9.013(6)
$b(\mathrm{~A})$	14.331(3)	18.398(3)	9.1714(2)	10.12940(10)	14.0607(4)	10.550(7)
$c(\AA)$	23..681(5)	22.148(5)	21.4585(4)	18.8287(3)	23.6310(7)	21.627(14)
$\alpha\left({ }^{\circ}\right)$	90	107.342(14)	90	96.9554(5)	90	77.491(10)
$\beta\left({ }^{\circ}\right)$	111.580(17)	97.740(7)	97.1196(11)	101.4536(6)	111.6100(9)	79.943(11)
$\gamma\left({ }^{\circ}\right.$)	90	95.656(14)	90	94.5914(5)	90	81.770(11)
$V\left(\AA^{3}\right)$	7028(3)	3452.6(12)	4174.65(13)	1690.38(4)	6856.0(3)	1965(2)
Z	8	4	4	2	8	2
Density ${ }_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.791	1.816	1.751	1.946	1.927	1.803
Absorption coefficient (mm^{-1})	1.527	1.497	1.375	2.544	2.566	2.245
$F(000)$	3712	1848	2184	960	3856	1048
Crystal size (mm)	$0.35 \times 0.25 \times 0.12$	$0.20 \times 0.08 \times 0.06$	$0.28 \times 0.22 \times 0.20$	$0.18 \times 0.08 \times 0.07$	$0.25 \times 0.10 \times 0.05$	$0.57 \times 0.15 \times 0.08$
θ Range for data collection (${ }^{\circ}$)	1.97-25.03	1.75-25.01	$2.93-26.37$	3.03-27.47	3.09-27.51	1.99-28.33
Limiting indices	$-25 \leqslant h \leqslant 25$	$-10 \leqslant h \leqslant 7$	$-26 \leqslant h \leqslant 26$	$-11 \leqslant h \leqslant 11$	$-28 \leqslant h \leqslant 28$	$-11 \leqslant h \leqslant 12$
	$-16 \leqslant k \leqslant 13$	$-20 \leqslant k \leqslant 20$	$-10 \leqslant k \leqslant 11$	$-13 \leqslant k \leqslant 13$	$-17 \leqslant k \leqslant 17$	$-13 \leqslant k \leqslant 13$
	$-26 \leqslant l \leqslant 25$	$-16 \leqslant l \leqslant 25$	$-24 \leqslant l \leqslant 26$	$-24 \leqslant l \leqslant 24$	$-30 \leqslant l \leqslant 30$	$-10 \leqslant l \leqslant 28$
Reflections collected	14159	11643	31985	29637	19084	16287
Independent reflections [$R_{\text {int }}$]	5337 [0.0641]	8415 [0.2359]	8506 [0.0834]	7652 [0.0411]	7751 [0.0416]	8800 [0.0549]
Maximum and minimum transmission			0.7705 and 0.6994	0.8420 and 0.6574	0.8824 and 0.5663	0.3611 and 0.8462
Data/restraints/parameters	5337/30/367	8415/0/751	8506/0/500	7652/0/424	7751/30/415	8800/0/466
Goodness-of-fit on F^{2}	1.010	0.988	0.975	1.164	1.010	0.722
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0557 \\ & w R_{2}=0.1284 \end{aligned}$	$\begin{aligned} & R_{1}=0.0684 \\ & w R_{2}=0.1329 \end{aligned}$	$\begin{aligned} & R_{1}=0.0387 \\ & w R_{2}=0.0897 \end{aligned}$	$\begin{aligned} & R_{1}=0.0266 \\ & w R_{2}=0.0698 \end{aligned}$	$\begin{aligned} & R_{1}=0.0656 \\ & w R_{2}=0.1744 \end{aligned}$	$\begin{aligned} & R_{1}=0.0612 \\ & w R_{2}=0.1618 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0708 \\ & w R_{2}=0.1317 \end{aligned}$	$\begin{aligned} & R_{1}=0.1210 \\ & w R_{2}=0.1373 \end{aligned}$	$\begin{aligned} & R_{1}=0.0573 \\ & w R_{2}=0.1048 \end{aligned}$	$\begin{aligned} & R_{1}=0.0326 \\ & w R_{2}=0.0879 \end{aligned}$	$\begin{aligned} & R_{1}=0.0859 \\ & w R_{2}=0.1819 \end{aligned}$	$\begin{aligned} & R_{1}=0.0839 \\ & w R_{2}=0.1849 \end{aligned}$
Largest difference peak and hole (e \AA^{-3})	2.219 and -1.044	1.447 and -0.837	0.781 and -1.133	0.732 and -1.648	6.199 and -1.142	3.466 and -1.1807

$J=94.0 \mathrm{~Hz}$); FAB MS: m / z 995. The minor band gave $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)\left\{\eta^{1}-\mathrm{SC}\left(\mathrm{NMe}_{2}\right)_{2}\right\}(\mathrm{CO})_{6}(\mu\right.$-dppm $\left.)\right] \quad$ (15) $(0.011 \mathrm{~g}, 10 \%)$ as yellow crystals from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $5^{\circ} \mathrm{C}$. (Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{SSe}$: C, $40.53 ; \mathrm{H}$, 3.21; N, 2.63. Found: C, 40.72; H, 3.34; N, 2.78\%). IR $\left(\nu \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2010 \mathrm{~s}, 1987 \mathrm{vs}, 1970 \mathrm{~s}, 1935 \mathrm{~s} \mathrm{~cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{~m}, 20 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~m}$, 1H) $3.33(\mathrm{~s}, 12 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 23.6(\mathrm{~d}$, $J=35.5 \mathrm{~Hz}), 14.2(\mathrm{~d}, J=35.5 \mathrm{~Hz})$; FAB MS: $m / z 1068$ $\left(\mathrm{M}^{+}\right)$.

4.7. X-ray crystallography

Intensity data for 6 and 7 were obtained using a Delft Instruments FAST TV area detector diffractometer using Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ as described previously [40]. Data sets were corrected for absorption using Difabs [41]. Crystal quality for 6 and 7 was poor, but their structures were satisfactory. Data for complexes 8-14 were obtained using a Bruker Nonius Kappa CCD diffractometer using Mo $\mathrm{K} \alpha$ radiation. Data collection and processing were carried out by using the programs collect [42] and DENzo [43]. The data were corrected for absorption effects by comparing the symmetry related data using sortav [44]. Intensity data for 15 were obtained on a Bruker SMART APEX CCD diffractometer using Mo $\mathrm{K} \alpha$ radiation at $150(2) \mathrm{K}$. Data reduction and integration was carried out with saint + and absorption corrections using SADABS [45,46].

The structures of $\mathbf{6}$ to $\mathbf{1 4}$ were solved by direct methods (shelxs-96) [47] and refined on F^{2} by full-matrix least squares (shelxl-97) [48] using all unique data. shelxtl plus V6.10 was used for structure solution and refinement for 15 [49]. For all structures, the nonhydrogen atoms were refined anisotropically and the hydrogen atoms were included in calculated positions (riding model). The phenyl rings in 6 and 7 were idealised. ISOR restraints were applied for $C(122)-C(126)$ in 6 and $O(6)$ in 7 . The Se and S positions in 14 were partially occupied with $\mathrm{Se} / / \mathrm{S} 1$ and $\mathrm{Se}^{\prime} / \mathrm{S1}^{\prime}$ sites being $0.83 / 0.17$ and $0.17 / 0.83$ occupied, respectively. Same positional parameters and temperature factor coefficients were refined for both partially occupied atoms at a given site using the EXYZ and EADP instructions in SHELXL-97. All non-hydrogen atoms in $\mathbf{1 5}$ were refined anisotropically and hydrogen atoms, except those bonded to Os, were placed in calculated positions (riding model). The positions of the hydrogen atoms bridging the Os atoms were refined using fixed isotropic thermal parameters.

The crystal data, details of data collection and refinement results are summarised in Table 7. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos 24852 for 6, 244853 for 7, 244854 for $\mathbf{8}, 244855$ for 10, 244856 for $\mathbf{1 4}, 244857$ for 15. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK, fax: +44 1223336 033, email: de-
posit@ccdc.cam.ac.uk or on the web www: http:// www.ccdc.ac.uk.

Acknowledgements

We thank Dr. K.M. Abdul Malik (Department of Chemistry, University of Cardiff) for obtaining X-ray data on compounds 6-14. The Royal Society (London) and the Swedish Academy of Sciences are thanked for supporting the collaboration between AJD and EN and the WennerGren Foundation (Stockholm) for a fellowship to A.J.D. to work at Lund University. SEK acknowledges support from the Royal Society (London), the Swedish International Development Agency and the Swedish Science Research Council.

References

[1] U. Bodensieck, H. Stoeckli-Evans, G. Süss-Fink, Chem. Ber. 123 (1990) 1603.
[2] U. Bodensieck, H. Stoeckli-Evans, G. Rheinwald, G. Süss-Fink, J. Organomet. Chem. 433 (1992) 167.
[3] U. Bodensieck, H. Stoeckli-Evans, G. Süss-Fink, J. Organomet. Chem. 433 (1992) 149.
[4] U. Bodensieck, J. Santiago, H. Stoeckli-Evans, G. Rheinwald, G. Süss-Fink, J. Chem. Soc., Dalton Trans. (1992) 255.
[5] U. Bodensieck, L. Hoferkamp, H. Stoeckli-Evans, G. Süss-Fink, J. Chem. Soc., Dalton Trans. (1993) 127.
[6] U. Bodensieck, H. Stoeckli-Evans, G. Süss-Fink, J. Chem. Soc., Chem. Commun. (1990) 267.
[7] U. Bodensieck, L. Hoferkamp, H. Stoeckli-Evans, G. Süss-Fink, Angew. Chem. 103 (1991) 1147; Angew. Chem., Int. Ed. Engl. 30 (1991) 112.
[8] G. Süss-Fink, U. Bodensieck, L. Hoferkamp, G. Rheinwald, H. Stoeckli-Evans, J. Cluster Sci. 3 (1992) 469.
[9] U. Bodensieck, G. Meister, H. Stoeckli-Evans, G. Süss-Fink, J. Chem. Soc., Dalton Trans. (1992) 2131.
[10] E.W. Ainscough, A.M. Brodie, S.L. Ingham, G.G. Kotch, A.J. Lees, J. Lewis, J.M. Waters, J. Chem. Soc., Dalton Trans. (1994) 1.
[11] K.A. Azam, R. Dilshad, S.E. Kabir, R. Miah, M. Shahiduzzaman, E. Rosenberg, K.I. Hardcastle, M.B. Hursthouse, K.M.A. Malik, J. Cluster Sci. 7 (1996) 49.
[12] S.M.T. Abedin, K.A. Azam, M.B. Hursthouse, S.E. Kabir, K.M.A. Malik, R. Miah, H. Vahrenkamp, J. Organomet. Chem. 564 (1992) 133.
[13] N. Begum, A.J. Deeming, M.K. Islam, S.E. Kabir, D. Rokhsana, E. Rosenberg, J. Organomet. Chem. 689 (2004) 2633.
[14] K.A. Azam, G.M.G. Hossain, S.E. Kabir, K.M.A. Malik, Md.A. Mottalib, S. Pervin, N.C. Sarker, Polyhedron 21 (2002) 381.
[15] T. Akter, N. Begum, D.T. Haworth, D.W. Bennett, S.E. Kabir, Md.A. Miah, N.C. Sarker, T.A. Siddiquee, E. Rosenberg, J. Organomet. Chem. 689 (2004) 1569.
[16] A.K. Smith, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds)., Comprehensive Organometallic Chemistry II, vol. 7, Pergamon Press, Oxford, UK, 1995, p. 747, in: D.F. Shriver, M.I. Bruce (Eds.).
[17] E. Sappa, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 7, Pergamon Press, Oxford, UK, 1995, p. 804, in: D.F. Shriver, M.I. Bruce (Eds.).
[18] A.J. Deeming, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 7, Pergamon Press, Oxford, UK, 1995, p. 684, in: D.F. Shriver, M.I. Bruce (Eds.).
[19] (a) G. Lavigne, N. Lugan, J.-J. Bonnet, Organometallics 1 (1982) 1040; (b) N. Lugan, J.-J. Bonnet, J.A. Ibers, J. Am. Chem. Soc. 107 (1985) 4484;
(c) G. Lugan, J.-J. Bonnet, J.A. Ibers, Organometallics 7 (1988) 1538;
(d) G. Lavigne, J.-J. Bonnet, Inorg. Chem. 23 (1984) 952.
[20] C. Bergounhou, J.-J. Bonnet, P. Fompeyrine, G. Lavigne, N. Lugan, F. Mansilla, Organometallics 5 (1986) 60.
[21] D.F. Foster, J. Harrison, B.S. Nicholls, A.K. Smith, J. Organomet. Chem. 295 (1985) 99.
[22] C.J. Adams, M.I. Bruce, B.W. Skelton, A.H. White, J. Organomet. Chem. 430 (1992) 181, and references therein.
[23] M.I. Bruce, P.A. Humphrey, B.W. Skelton, A.H. White, J. Organomet. Chem. 429 (1992) 187.
[24] S.E. Kabir, M. Karim, K.M.A. Malik, T.A. Siddiquee, Inorg. Chem. Commun. 2 (1999) 128.
[25] P. Fompeyrine, G. Lavigne, J.-J. Bonnet, J. Chem. Soc., Dalton Trans. (1987) 91.
[26] M.I. Bruce, N.N. Zaitseva, B.W. Skelton, A.H. White, J. Organomet. Chem. 515 (1996) 143.
[27] (a) M.I. Bruce, P.A. Humphrey, E. Horn, E.R.T. Tiekink, B.W. Skelton, A.H. White, J. Organomet. Chem. 429 (1992) 207;
(b) M.I. Bruce, J.R. Hinchliffe, R. Surynt, B.W. Skelton, A.H. White, J. Organomet. Chem. 469 (1994) 89;
(c) M.I. Bruce, P.A. Humphrey, H. Miyamae, B.W. Skelton, A.H. White, J. Organomet. Chem. 429 (1992) 187.
[28] A.J. Deeming, Md.I. Hyder, S.E. Kabir, S.J. Ahmed, K.M.A. Malik, unpublished results.
[29] M.R. Churchill, F.J. Hollander, J.P. Hatchinson, Inorg. Chem. 16 (1977) 2655.
[30] T.M. Layer, J. Lewis, A. Martin, P.R. Raithby, W.-T. Wong, J. Chem. Soc., Dalton Trans. (1992) 1411.
[31] D. Cauzzi, C. Graiff, M. Chiara, G. Predieri, A. Tiripicchio, D. Acquotti, J. Chem. Soc., Dalton Trans. (1999) 3515.
[32] D. Cauzzi, C. Graiff, G. Predieri, A. Tiripicchio, C. Vignali, J. Chem. Soc., Dalton Trans. (1999) 237.
[33] D. Cauzzi, C. Graiff, M. Lanfranchi, G. Predieri, A. Tiripicchio, J. Chem. Soc., Dalton Trans. (1995) 2321.
[34] R.D. Adams, J.E. Babin, M. Tasi, Organometallics 7 (1988) 219.
[35] A.W. Coleman, D.F. Jones, P.H. Dixneuf, C. Brisson, J.-J. Bonnet, G. Lavigne, Inorg. Chem. 23 (1984) 952.
[36] R.D. Adams, G. Chen, Organometallics 11 (1992) 837.
[37] U. Schubert, in: K.H. Dötz, H. Fischer, P. Hoffmann, U. Schubert, K. Weiss (Eds.), Transition Metal Carbene Complexes, Verlag Chemie, Weinheim, Germany, 1983.
[38] S.E. Kabir, S. Pervin, N.C. Sarker, A. Yesmin, T.A. Siddiquee, D.T. Haworth, D.W. Bennett, K.M.A. Malik, J. Organomet. Chem. 681 (2003) 237.
[39] M.I. Bruce, B.K. Nicholson, M.L. Williams, Inorg. Synth. 26 (1989) 271; Inorg. Synth. 28 (1990) 225.
[40] J.A. Darr, S.R. Drake, M.B. Hursthouse, K.M.A. Malik, Inorg. Chem. 32 (1993) 5704.
[41] N.P.C. Walker, D. Stuart, Acta Crystallogr. A39 (1983) 158.
[42] R. Hooft, collect Data Collection Software, Nonius B.V. Delft, The Netherlands, 1998.
[43] Z. Otwinowski, W. Minor, in: C.W. Carter, R.M. Sweet (Eds.), Macromolecular Crystallography, Academic Press, New York, 1997, p. 307.
[44] R.H. Blessing, Acta Crystallogr. A51 (1995) 33.
[45] smart and saint Software for CCD Diffractometers, version 6.1, Bruker AXS, Madison, WI, 2000.
[46] G.M. Sheldrick, sadabs Software for Empirical Absorption Correction, University of Göttingen, Germany, 2000.
[47] G.M. Sheldrick, Acta Crystallogr. A46 (1990) 467.
[48] G.M. Sheldrick, shelxl-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
[49] G.M. Sheldrick, shelxtl plus, Version 6.1, Bruker AXS Inc., Madison, WI, 2000.

[^0]: * Corresponding author.

 E-mail address: a.j.deeming@ucl.ac.uk (A.J. Deeming).

